References
- [AT15]
- J. L. Aurentz and L. N. Trefethen. Chopping a Chebyshev Series (2015), arXiv:1512.01803 [math.NA].
- [B+08]
- M. C. Babiuc and others. Implementation of standard testbeds for numerical relativity. Class. Quant. Grav. 25, 125012 (2008), arXiv:0709.3559 [gr-qc].
- [BT03]
- R. Baltensperger and M. R. Trummer. Spectral Differencing with a Twist. SIAM Journal on Scientific Computing 24, 1465–1487 (2003), arXiv:https://doi.org/10.1137/S1064827501388182.
- [BT04a]
- J.-P. Berrut and L. N. Trefethen. Barycentric lagrange interpolation. SIAM review 46, 501–517 (2004).
- [BT04b]
- J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange Interpolation. SIAM Review 46, 501–517 (2004), arXiv:https://doi.org/10.1137/S0036144502417715.
- [CZ14]
- G. B. Cook and M. Zalutskiy. Gravitational perturbations of the Kerr geometry: High-accuracy study. Phys. Rev. D 90, 124021 (2014), arXiv:1410.7698 [gr-qc].
- [DO09]
- S. R. Dolan and A. C. Ottewill. On an Expansion Method for Black Hole Quasinormal Modes and Regge Poles. Class. Quant. Grav. 26, 225003 (2009), arXiv:0908.0329 [gr-qc].
- [For88]
- B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of computation 51, 699–706 (1988).
- [For98]
- [For21]
- B. Fornberg. An algorithm for calculating Hermite-based finite difference weights. IMA Journal of Numerical Analysis 41, 801–813 (2021).
- [HWB16]
- D. Hilditch, A. Weyhausen and B. Brügmann. Pseudospectral method for gravitational wave collapse. Phys. Rev. D 93, 063006 (2016), arXiv:1504.04732 [gr-qc].
- [Len76]
- W. J. Lentz. Generating Bessel functions in Mie scattering calculations using continued fractions. Applied optics 15, 668–671 (1976).
- [MV04]
- V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods. GAMM-Mitteilungen 27, 121–152 (2004).
- [Nea15]
- R. M. Neal. Fast exact summation using small and large superaccumulators (2015), arXiv:1505.05571 [cs.NA].
- [Pre07]
- W. H. Press. Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).
- [Rip23]
- [Ste19]
- L. C. Stein, qnm: A Python package for calculating Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients. J. Open Source Softw. 4, 1683 (2019), arXiv:1908.10377 [gr-qc].
- [SLS09]
- B. Szilagyi, L. Lindblom and M. A. Scheel. Simulations of Binary Black Hole Mergers Using Spectral Methods. Phys. Rev. D 80, 124010 (2009), arXiv:0909.3557 [gr-qc].
- [Tem24]
- N. M. Temme. DLMF: §3.10 Continued Fractions ‣ Areas ‣ Chapter 3 Numerical Methods,
https://dlmf.nist.gov/3.10
(09 2024) (Accessed on 09/19/2024). - [TB86]
- I. J. Thompson and A. R. Barnett. Coulomb and Bessel functions of complex arguments and order. Journal of Computational Physics 64, 490–509 (1986).