References

[AT15]
J. L. Aurentz and L. N. Trefethen. Chopping a Chebyshev Series (2015), arXiv:1512.01803 [math.NA].
[B+08]
M. C. Babiuc and others. Implementation of standard testbeds for numerical relativity. Class. Quant. Grav. 25, 125012 (2008), arXiv:0709.3559 [gr-qc].
[BT03]
[BT04a]
J.-P. Berrut and L. N. Trefethen. Barycentric lagrange interpolation. SIAM review 46, 501–517 (2004).
[BT04b]
[CZ14]
G. B. Cook and M. Zalutskiy. Gravitational perturbations of the Kerr geometry: High-accuracy study. Phys. Rev. D 90, 124021 (2014), arXiv:1410.7698 [gr-qc].
[DO09]
S. R. Dolan and A. C. Ottewill. On an Expansion Method for Black Hole Quasinormal Modes and Regge Poles. Class. Quant. Grav. 26, 225003 (2009), arXiv:0908.0329 [gr-qc].
[For88]
B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of computation 51, 699–706 (1988).
[For98]
[For21]
B. Fornberg. An algorithm for calculating Hermite-based finite difference weights. IMA Journal of Numerical Analysis 41, 801–813 (2021).
[HWB16]
D. Hilditch, A. Weyhausen and B. Brügmann. Pseudospectral method for gravitational wave collapse. Phys. Rev. D 93, 063006 (2016), arXiv:1504.04732 [gr-qc].
[Len76]
W. J. Lentz. Generating Bessel functions in Mie scattering calculations using continued fractions. Applied optics 15, 668–671 (1976).
[MV04]
V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods. GAMM-Mitteilungen 27, 121–152 (2004).
[Nea15]
[Pre07]
W. H. Press. Numerical recipes 3rd edition: The art of scientific computing (Cambridge university press, 2007).
[Rip23]
[Ste19]
L. C. Stein, qnm: A Python package for calculating Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients. J. Open Source Softw. 4, 1683 (2019), arXiv:1908.10377 [gr-qc].
[SLS09]
B. Szilagyi, L. Lindblom and M. A. Scheel. Simulations of Binary Black Hole Mergers Using Spectral Methods. Phys. Rev. D 80, 124010 (2009), arXiv:0909.3557 [gr-qc].
[Tem24]
N. M. Temme. DLMF: §3.10 Continued Fractions ‣ Areas ‣ Chapter 3 Numerical Methods, https://dlmf.nist.gov/3.10 (09 2024) (Accessed on 09/19/2024).
[TB86]
I. J. Thompson and A. R. Barnett. Coulomb and Bessel functions of complex arguments and order. Journal of Computational Physics 64, 490–509 (1986).